
Environmental Health Perspectives
Vol. 63, pp. 203-210, 1985

Point Process Models in Asthma Attacks
for Assessing Environmental Risk Factors

by Toshinari Kamakura* and Takemi Yanagimoto*

Point process models are reviewed and discussed for assessing the effects of environmental risk factors
on asthma attacks. It is pointed out that the logit model and proportional intensity model are useful for
analyzing the data based on the diaries recorded consecutively during several months or during a few
years. Some covariates that seems to influence upon asthmatics are explored using these models. Further
work on estimating the smoothed base-line intensity function is briefly discussed in terms of the Bayes
model.

Introduction
According to the definition of the joint committee of

the American Thoracic Society and American College
of Chest Physicians, asthma is a disease characterized
by an increased responsiveness of airways to various
stimuli and manifested by slowing of forced expiration
which changes in severity either spontaneously or with
treatment (1). In this study we are interested in the
effects of some environmental stimuli on asthma at-
tacks.

Environmental stimuli are generally classified into
three categories. The first category consists of stimuli
caused by meteorological or aerometric factors such as
barometric pressure, temperature and humidity. Kasai
and Nemoto (2) investigated the distribution of atmos-
pheric pressure in relation to a panel attack rate and
found the nine patterns under which patients were likely
to have asthma attacks with high frequency. Wagner
et al. (3) explored the weather front manifested by
changes in barometric pressure, cold air or altered air
ionization; however they failed to show any statistically
significant relation between these factors and asthma
attacks. The second category consists of the stimuli of
air pollutants such as sulfur oxides, oxides of nitrogen,
carbon monoxide, and others. The detailed description
of air pollution and respiratory disease appears in
Whittemore (4). These effects are frequently studied in
relation to meteorological influences (5-7). The third is
the category that includes other environmental stimuli
such as pollens (8), spores, and house dust.

In this article the effects of environmental stimuli in
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the first two categories on asthma are examined and
evaluated in the light of data from panel studies.

Point Process Modeling of Asthma
Attacks
We denote by Xi(t) the binary random variable which

represents the absence or presence of an attack for the
i-th asthmatic at time t. For each asthmatic i, repeated
measurements are made on the levels of a set of envi-
ronmental stimuli at different times t and are recorded
in a diary. These risk factors are time-dependent co-
variates z(t) which have been found to play an important
role in predicting asthma attacks (5,6). Korn and
Whittemore (5) pointed out that usual linear models of
panel attack rate had many problems, including the as-
sumption of independence of successive asthma attacks.
They therefore used the logit model with a Markov pa-
rameter, thereby taking dependency of successive ran-
dom variables into consideration. In their analysis the
Markov parameter was found to be highly statistically
significant. This finding was first verified by Hasselblad
(9) and later by Yanagimoto and Kamakura (6).

In this section we present three point process models,
modulated by stimuli covariates. We define discrete in-
tensity pi(t) for the i-th patient at time t given his attack
history Hi(t) (= { Xj(u), u < t } ) and covariate process
Wi(t), ( = Zj(u), u - t } ) as the following:

pi(t) = Pr{Xi(t) = 1 Hi(t), Wi(t) } (1)

The model one is a multiple logistic model based on
consecutive observations for the patient i:
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log lp(t)1 - pj(t)-
J

i + z a%iXi(t -j) +
j=1

rameters are estimated by the partial likelihood,

K

ikZik(t) (2)

where K is the number of stimuli and 1 - i - n, where
n is the number of patients in the study. In the case J
- 0, the second term of the right-hand side will vanish.
If we set J= 1, Xi(t) is two-state Markov chain (5). The
model of two-state Markov chain is theoretically given
by Whittemore and Keller (10), using the threshold ap-
proach. It is assumed that an asthmatic has an attack
when the intensity of random trigger exceeds his
threshold.
When we can assume that each individual in the panel

has common a(j = 1, . . ., J) and k(k = 1, ...,K),
we have the second model,

Pi (t)

log pi (t)
J K

Fi + 2f ojxj (t j) + kZk(t)
1=1k=

The parameter ,ui is necessary for adjusting the differ-
ence among patients' attack intensities.
The third one is the proportional intensity model,

which is the generalization of Cox's (11) proportional
hazard model to the point process case (12,13). The
model is expressed by the following;

pi(t) _

1 - pi(t)

_ po(t) exp {Ii + 2ajXi(t - j) +
K

I PkZik(t)
k=lJ

where po(t) is the base-line intensity function and we
set the constraint E ,i = 0 to remove the redundancy
of parametrization of the base-line intensity function
and i.
The method of parameter estimation in Eq. (2) is

based on the likelihood,

T

LT = I {pi(t)}Xi(t){l pi(t)}1xi(t) (5)
t=1

In the second model we can obtain parameter estimates
by maximizing the products of an individual likelihood
expressed by the form of Eq. (5), that is,

n T

I, = HI {pi(t)}x(t){1 = pi(t)}1xi(t) (6)
i=1 t=1

When we use the proportional intensity model, the pa-

LIII=~~~~~~~~
[ rt exp { [Li +

HI exp {>i +
,Oe,t ie"

J

ajXi(t
j= 1

J

2jXi(t

- ) + kE kZik(t)

- ) + kkZik(t)

(7)

where 4XOt is the set of the patients who have attack at
time t and 4't is the set of all subsets of size 14otI from
the risk set {1, . .. , n}. Here 14)ti indicates the cardinal
number of the set 4ot. The set + is any subset of the
set 40t. If many patients have attacks at the same time,
the size of lYotl becomes larger, and the computation of
Eq. (7) becomes difficult. In such a case one can use
approximation derived by Peto (14) and Breslow (15);
however, this approximation gives rise to downward
bias (16), so the recursive algorithm (17-19) should be
applied.
Here we note that the proportional intensity model

fails to detect the differences in the effects of the cov-
ariates among patients, since the parameter vector ,B is
common among them. On the contrary, one can say that
proportional intensity model has good property to ob-
tain estimates of individual parameters excluding com-
mon covariates exposed to all asthmatics.

Our Experiences
Statistical models described in the preceding section

was applied to three actual data sets. They include sur-
veys at Tokyo, Chiba, and eight large cities in Japan.
Physicians asked their outpatients to keep the record
in a diary of asthma attacks, health conditions and med-
ications. Uniform asthma diaries were prepared for the
purpose of these surveys. We will concentrate on two
data sets.

Tokyo Metropolitan Asthma Attack Diary
Study
The first data set is obtained from a survey conducted

at Bokutoh Metropolitan and Kiyose Pediatric Hospitals
under the sponsorship of Tokyo Metropolitan Govern-
ment. The time period of the survey covers from Sep-
tember 1978 through October 1980. The survey was
designed for evaluating the relation of environmental
factors, especially concentrations of air pollutants to,
asthma attack, and it was a part of a large scale survey.
Among the records of patients who entered the survey,
those of 20 patients were carefully selected based on
the following criteria. The record length of each patient
is longer than 417 days; attack rates lie between 4.4%
and 53.0%, and the proportion of missing data is less
than 3.2%.
We first present the results of the analysis for the
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ten selected persons. Here the levels of environmental
factors, such as photochemical factors, on the day prior
to an attack are studied in relation to asthma attacks.
Table 1 presents (-2) * (maximized log-likelihood and
the signs of the estimates of the regression coefficients
using the likelihood LI. The value ofJ gives the number
of cij and the differences of the (-2) * (maximized log-
likelihood) in each parameter setting presents test of
significance; for example, for patient I.D. 105 we obtain
a highly significant positive estimate of a,,, because the
the difference in chi-squared values between J = 0 and
J = 1 is 439.18 subtracted from 786.41, or 347.23, with
one degree of freedom. Other cases also indicate that
Markov parameters are statistically highly significant.

In winter it is known that attack frequency is low.
Our logit model, Eq. (2), also confirms this hypothesis
of decrease in the number asthma attacks in winter
time. The regression coefficient for winter covariate (1
= winter, 0 = otherwise) are statistically significant
and they have negative signs. We can see this tendency
in all asthmatics. It is noteworthy that when J changes
from 0 to 1, the chi-squared values in the model of Eq.
(2) are reduced greatly.
We find in literature many possible attributable fac-

tors, including season, weather conditions, rapid change
of weather, rainy season in early summer and Sunday.
These factors are used in the model, Eq. (2), with J = 0.
Our analysis suggests that -rainy season and Sunday are
important attributable factors. Though biometeorolo-
gists insist on the possible relation ofweather conditions
to asthma attacks, weather conditions are not detected
except for trough pattern (east-west) in our study. This
is partly explained by the fact that classification of
weather conditions depends highly on subjective judge-
ment. We are afraid that spurious excess of chi-squared
values under the model of Eq. (2) with J= 0 may have
caused many possible attributable factors in literature.
The evaluation of concentrations of air pollutants is

difficult, since they are sensitive to many factors. Ox-
idant among air pollutants provides an attractive result.
Chi-squared values for three patients are all greater

than 2, and the largest one is 13.16. The signs of the
estimated parameter for the three patients are all pos-
itive. However we should be careful in interpretation
of the result. In fact, as stated above, the concentration
of oxidant is low in winter, when the attack rate is low.
It is recommended to check the result by using another
data set and different models.
Now we apply the proportional intensity model to this

data set. This model requires some homogeneity among
patients because we assume common base-line intensity
functions and common parameters aoj = 1,..., J), Pk
(k= 1, . . ., K). To assure the homogeneity each of the
five selection criteria is used, separately: (1) the chi-
square value of the regression coefficient of oxidant is
greater than two; (2) in the model which includes only
one Markov covariate the patient gives the estimate
near the value 2.4; (3) the estimate of coefficient of Mar-
kov covariate is around 3.4; (4) the attack rate is high;
(5) the attack rate is low. The selected patients are
presented in Figure 1. We apply the proportional in-
tensity model to the records of patients selected by each
criterion. The estimates of the regression coefficients
of oxidant covariates are summarized in Table 2. Here
we assume the model which has a Markov covariate a,
(J = 1). The detailed description of data analysis are
given by Yanagimoto and Kamakura (6).

Nationwide Asthma Attack Study
The next study is a part of the national-wide data set

recorded under the financial support of Environmental
Agency. The data include asthma attack processes of
both adult and childhood patients who have residences
at eight main large cities dispersed from the north of
Japan to the south: Sapporo, Sendai, Tokyo, Nagoya,
Osaka, Hiroshima, Fukuoka, and Naha. The asthma
attack data were recorded every 6 hr for each patient
who lives near one of the above eight cities. This nation-
wide data set is obtained in an attempt to investigate
the relations between environmental factors and asthma
attacks which appear to affect people nationwide.

Table 1. The signs of regression coefficients and the (-2) x (maximized log-likelihood) for the models of the form of Eq. (5).

J ID 105 ID 113 ID 114 ID 204 ID 207 ID 208
0 (786.41) (629.07) (953.66) (274.28) (1064.15) (790.69)
1 (439.18) (500.79) (730.91) (210.64) (795.37) (772.78)
2 (439.16) (490.69) (717.53) (207.13) (785.16) (772.39)
3 (437.83) (490.68) (710.42) (207.09) (782.14) (759.71)

Oxidant - (785.25) + (627.99) + (950.03) + (243.30) + (1063.77) - (790.68)
O + (439.18) + (500.08) + (729.57) + (197.48) - (795.20) - (772.74)
1 + (439.16) + (490.13) + (716.14) + (195.93) - (784.88) - (772.35)
2 + (437.83) + (490.12) + (709.04) + (195.91) - (781.69) - (759.69)
3 - (774.56) - (628.01) - (916.59) - (262.81) - (1051.73) + (789.99)

Winter - (437.49) - (500.42) - (719.06) - (205.36) - (791.65) + (772.31)
0 - (437.48) - (490.26) - (707.70) - (202.44) - (782.09) + (771.97)
1 - (436.28) - (490.25) - (701.76) - (202.38) - (779.42) + (759.52)
2
3
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CRITERIA 1 2 3 4 5
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FIGURE 1. Selection of patients for the proportional intensity model.

An asthma attack process {Xi(t), t= 1, . . ., T} is re- ological explanation of asthma attacks. The covariates
corded in the sequence of the values which are zero or of barometric pressure. temperature and humidity are
one. Here the variable t takes integer values from one of our interest and other covariates of history of attack
to T, and the time unit is expressed by 6 hr. The variable process are used to adjust inhomogeneity ofdependency
Xi(t) takes the value of one when the i-th patient has of attack occurrence on the attack history. The number
attacks during 6 hr. Corresponding to this unit we use of covariates of history will be denoted as order J; for
the averages of meteorological covariates during the 6 example, when order is one without other covariates,
hr. the data set corresponds to the independent Markov

In this subsection we use the model given by the chains. Korn and Whittmore (5) describe another
likelihood LI, in Eq. (3) from the viewpoint of meter- method ofestimating the parameters which are common
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Table 2. Signs of regression coefficients of the oxidant covariate
and chi-squared values.

Selection 1 2 3 4 5
Signs + + + + +
Chi-square values 3.241 2.904 1.331 4.967 0.782

to all patients. One example is the case where patients
live in the same district, and hence, they are affected
by the same meteorological factors. They propose the
random effect model based on the assumption that the
regression coefficient parameters are normally distrib-
uted. Here we use the fixed effect model of Eq. (3)
without assuming normality. However, we cannot uti-
lize the computation of each patient and so many pa-
rameters including individual parameters ,ui (i = 1, . . .,

n) should be simultaneously estimated. These calcula-
tions may be laborious when the number of patients
who enter the study is large.
We analyze these data by using several models de-

rived from the likelihood LlI. Table 3 gives estimates
of the regression coefficients and estimated normal de-
viates for a number of models that were fitted to the
data of patients at Naha in Okinawa without the esti-
mates of pu? measuring heterogeneity of attack occur-
rences. The regressor variables at time t are defined in
the following manner: Markov covariate, the value of
the Xi(t - 1), (ZO); barometric pressure (Z1); Zj(t) -

Z1 (t - 1), (Z2); temperature (Z3); Z3 (t) - Z3(t - 1),
(Z4); humidity (Z5); Z5(t) - Z5 (t - 1), an indicator
variable: 0 = day time or evening, 1 = morning or

night (Z7), where the morning is defined to be the time

from three o'clock to nine, the day is from nine to fifteen,
the evening is from fifteen to twenty one, and the night
is from twenty one to three of the next day.
The most remarkable feature of these data is the high

statistical significance of a, which is the regression coef-
ficient ofMarkov covariate ZO. The models with Markov
parameter (models; 2, 4, 6, 8) require the records at
previous time, t - 1. Hence, patients with any missing
information at time t - 1 or t cannot be included in the
models. Therefore, it is meaningful to compare the val-
ues of the maximum likelihoods among the models, 1,
3, 5, 7 and, separately, among the models 2, 4, 6, 8
(Table 3). The best fitted models according to AIC (de-
viance plus two times the number ofparameters) (20,21)
are the model 7 and the model 8, which include the
covariate measuring the effect of night and morning.
This corresponds to the fact that patients are likely to
have attacks in the morning or at night. These data
suggest that asthma attacks of patients are apt to occur
at low temperature when the pressure goes down or
the temperature changes downwardly. Though the
models 1, 2, 5 and 6 suggest that high humidity influ-
ences patients with a higher attack rate, the covariate
of humidity (Z5 or Z6) and the covariate of night and
morning (Z7) are closely correlated, and therefore, the
effect of humidity may be excessively evaluated in ab-
sence of the covariate Z7.

Discussion
In this section we will discuss the problems yet to be

solved in searching for the stimuli which trigger asthma
attacks.

Table 3. Regression coefficients and (estimated) normal deviates for the models of the form (6) fitted to the asthma attack data by 6-
hr records.

Model Model Model Model Model Model Model Model
Covariates 1 2 3 4 5 6 7 8

ZO 1.4565 1.6798 1.7967 1.8289
(25.1065) (27.3117) (28.8505) (28.5868)

Z, 0.0010 - 0.0054 - 0.0030 - 0.0110
(0.2021) (- 1.0090) (- 0.5702) (- 1.9762)

Z2 0.1150 -0.1654 -0.1728 - 0.2168
(-6.1801) (-8.3528) (-8.9379) (- 10.5988)

Zs --0.1433 - 0.1494 -0.0763 -0.0594
(- 16.1709) (- 16.1480) (- 7.5148) (- 5.5307)

Z4 - 0.0933 -0.2366 0.0676 - 0.0725
(-4.1092) (- 9.6290) (2.4306) (- 2.7113)

Z6 0.0480 0.0507 0.0012 - 0.0110
(8.8400) (8.9383) (0.1845) (- 1.6273)

Z6, 0.0511 0.0346 -0.0059 -0.0237
(5.4613) (3.5219) (- 0.5877) (- 2.2455)

Z7 0.9365 1.2772 1.3646 1.4168
(14.4285) (18.0560) (17.2223) (16.9631)

Deviance 10115.4 9513.2 9933.4 9159.2 10245.6 9376.8 9932.4 9072.0
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Table 4. Number of monthly occurrences of asthma attacks for
two patients.

Year
1978

1979

Month
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10

1980

Patient 1
4
3
6
3
2
2
13
0
0
2
1

10
4
4
6
7
7
5

22
7

11
15
0
1
6

Patient 2
2
3
0
2
0
3
5
3
4
3
4
4
7
6
8
6
1
1
2
7
7
7

10
11
2

function somehow.
Here we consider a problem which includes both nuis-

ance parameters and a structural parameter. They cor-
respond to the parameters comprising the baseline in-
tensity function and a regression coefficient parameter,
respectively. We assume that two sequences {XJ}, {Yt},
(t = 1, ... ,T) have independent binomial distributions,

Pr {Xt = xt} = Pt -Pt (8)

and

Pr (Yt = Yt} = :] qtYt (1 - qt)mt -Yt (9)

respectively, where we have restrictions that

(10)[Pt/(l - Pt)] = 0 + Tt

and

log [qt/(l - q,)] = Tt

When we investigate the relation between weather
fronts and asthma attacks, it is preferable to obtain the
data of asthma attacks along the path where fronts
move. The weather information can be easily obtained
from the weather stations, but that of asthmatics is
much difficult. If such data can be collected, spacial may
be needed including data of weather fronts and data of
asthma attack occurrences of patients who are decen-
tralized in the space.
Furthermore asthma attacks are closely related to

immunological mechanism so that some episodes of
asthma are highly individualized. Therefore, the more
refined models that incorporate covariables for immu-
nological mechanism of each patient need to be devel-
oped. The effects of medicines should be also taken into
consideration.
Other problems are the following: (1) How should the

base-line intensity function in the proportional intensity
model be estimated? (2) Which models should be se-
lected among the three models described in the section
two and other models including modulated renewal
model? (3) How should the order J (the number of pa-
rameters of aj included in the model) of the dependency
upon individual history be given?

In the proportional intensity model, the base-line in-
tensity function is considered as nuisance. One method
to obtain estimates of the regression coefficient param-
eters is to use the partial likelihood without the infor-
mation on the base-line intensity function. However, in
some cases the intensity function might be of main in-
terest, as is the case when the survival function is re-
quired to be estimated in the proportional hazard model.
In those cases we should estimate the baseline intensity

(11)

The parameters Tt and the parameter 0 are called in-
cidental (or nuisance) and structural (22), respectively,
where a log odds ratio 0 is of main interest.

In Table 4 we have two sequences, each pair of which
consists of the numbers of days when two patients have
attacks in a month. The estimates of both Tt and 0 are
obtained from maximization of the likelihood,

nF nt M[t px'(l - pt)nlIt qyt(l - qt)mt -Yt (12)
t=1 Xt yt t t

When the parameters, Tt are not of our interest, the
procedure based on the conditional likelihood can been
used. Since the binomial distribution belongs to the ex-
ponential family explored in Andersen (22), the solution
is given by:

, [8] [X,

[nt][

+MYt-1exp {0s}
+ Yt - S]

+Mt~ exp {0s}
(13)

The above estimation procedure is closely related to the
partial likelihood of the point process defined above.

It may be naturally assumed that the incidental pa-
rameter rt change smoothly for t. Using the natural
assumption as prior information, the Bayes-type ap-
proach (23) can be used. For example we assume that
3 [= (0, Tl * , TT)] has a multidimensional normal dis-
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FIGURE 2. Estimnates of the binomial model.

tribution whose covariance matrix is D1 I D' -1, where

1
0 1

D | -1 1 0
-11 0

0

and

em2 1,0

E °tr----------I 12 0

Here the matrix IT-1 is the (T - 1)-dimensional identity
matrix. The parameter P is estimated as the mode of
the posterior distribution with the estimates of the hy-
per parameters obtained by minimization of ABIC (23).
ABIC is defined as follows;

ABIC = - 2 logfL(x,ylo) (0138) d,B

Here L(x,yl) is the likelihood expressed as Eq. (12).
($Ib) is the density of a prior distribution with a hyper

parameter 8 [= (u( and (,J a)]. The estimates of T, in
terms of both the maxiumum likelihood and the pro-
posed smoothing method appear in Figure 2, where (JH
and crT go to infinity. As for the structural parameter 0,

the maximum likelihood method and the smoothing
method give the estimates, 0.342 and 0.331, respec-
tively. The effect of prior information of rt upon the
estimate of 0 should be investigated and the smoothing
priors selected with meticulous care.
The problem of model selection is very difficult be-

cause the measurement of deviance or AIC cannot be
utilized in a conventional way when one of the mdels
under study requires the partial likelihood approach.
Further work is required on the properties ofregression
coefficients in modulated renewal model and propor-
tional intensity model in order to evaluate the differ-
ences of estimates among the modulated renewal model
and other model described above.
The third problem is closely related to time series

analysis, where the order is generally determined from
the viewpoint of forecasting. However, in our analysis
one of the greatest concerns is to obtain the information
about not forcasting but cause-effect mechanism of en-
vironmental stimuli and asthma attacks.

The authors wish to thank Dr. Suzuki in Tokyo University for giving
a chance to analyze a nationwide asthma attack data set and helpful
discussions to this work.
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